NUCLEAR MEDICINE TECHNOLOGY — B.S.

Program director
Raynold Ho

The Program
Nuclear medicine uses radioactivity to diagnose and treat disease. This medical specialty provides information about both the structure and the function of virtually every major organ system within the body. Nuclear medicine procedures are safe, involve little or no patient discomfort, and do not require the use of anesthesia.

The nuclear medicine technologist is responsible for preparing and administering radio-pharmaceuticals; performing patient-imaging procedures; accomplishing computer processing and image enhancement; analyzing biologic specimens; and providing images, data analysis, and patient information for diagnostic interpretation by the physician health-care team member.

The Bachelor of Science degree with a major in nuclear medicine is a face-to-face program and is completed in 24 to 27 months. In addition to radiation sciences core courses, this program will include CT didactic courses. The Bachelor program includes a total of 1,083 classroom hours and 1,550 clinical hours, distributed over 5 years. The program is approved by the California Department of Public Health, Radiologic Health Branch, P.O. Box 942732, Sacramento, CA 94234-7320. Loma Linda University is also accredited by the WASC Senior College and University Commission (WSCUC), 985 Atlantic Avenue, Suite 100, Alameda, CA 94501; telephone: 510/748-9001; fax: 510/748-9797; website: https://www.wscuc.org/contact/.

Objectives
During the B.S. degree in nuclear medicine technology program, students take formal coursework along with instruction in the clinical aspects of nuclear medicine. This includes participation, under close supervision, in the actual procedures within the nuclear medicine department.

Students are required to follow the guidelines given by the NMTCB and the ARRT as well as meet required competencies each quarter. Students should accomplish the required competencies in the following areas: skeletal, CNS, cardiovascular, endocrine/exocrine, gastrointestinal, genitourinary, respiratory, radiopharmacy, venipuncture, vital signs, and EKG placement and monitoring. Students will receive more than 1,550 hours of nuclear medicine and 250 hours of CT clinical experience.

Program learning outcomes
By the end of this program, the graduate should be able to:

1. Demonstrate the knowledge, skills, and responsibilities necessary for the practice of nuclear medicine.

2. Practice safe, compassionate patient care, including appreciation and respect for cultural diversity.

3. Demonstrate appropriate critical-thinking, problem-solving, and decision-making skills in nuclear medicine.

4. Maintain and apply competent skills and knowledge by interacting with fellow professionals, attending educational conferences, and staying current with changing technology.

5. Apply knowledge of departmental organization and function.

6. Apply quantitative reasoning to the practice of nuclear medicine.

7. Achieve required clinical competencies for nuclear medicine.

Professional registration and certification
Upon completion of the certificate requirements, the student is eligible to write the ARRT qualifying examination in nuclear medicine as well as the NMTCB and California (CTNM) certifying examination.

Accreditation
The Nuclear Medicine Technology Program is accredited by the Joint Review Committee on Nuclear Medicine Technology (JRCNMT), 840 West Danforth Road, B1, Edmond, OK 73003; telephone: 405/285-0546; website: www.jrcnmt.org (http://www.jrcnmt.org/). The program is approved by the California Department of Public Health, Radiologic Health Branch, P.O. Box 942732, Sacramento, CA 94234-7320. Loma Linda University is also accredited by the WASC Senior College and University Commission (WSCUC), 985 Atlantic Avenue, Suite 100, Alameda, CA 94501; telephone: 510/748-9001; fax: 510/748-9797; website: https://www.wscuc.org/contact/.

Admissions
To be eligible for admission to the nuclear medicine program, the applicant must fulfill the following requirements: complete the prerequisite requirements, or be a graduate of an accredited radiologic technology program who has completed the prerequisite requirements in conjunction with that program.

Admission is based on a selective process. In addition to Loma Linda University (http://llucatalog.llu.edu/about-university/admission-policies-information/#generalregulationstext) and School of Allied Health Professions admissions requirements (http://llucatalog.llu.edu/allied-health-professions/#generalregulationstext), the applicant must also complete the following requirements:

- Minimum of 96 quarter units that are applicable to the B.S. degree program.
- G.P.A. of 3.0 or better
- A minimum of eight hours of career observation (volunteer/employee) in a nuclear medicine department is required prior to the interview. The observation form is located online at www.jrcnmt.org. The program is approved by the California Department of Public Health, Radiologic Health Branch, P.O. Box 942732, Sacramento, CA 94234-7320. Loma Linda University is also accredited by the WASC Senior College and University Commission (WSCUC), 985 Atlantic Avenue, Suite 100, Alameda, CA 94501; telephone: 510/748-9001; fax: 510/748-9797; website: https://www.wscuc.org/contact/.

- Interview

Certifications
Applicants must have all of the following certifications completed prior to the beginning of the school year.

- Current adult and child CPR card from the American Heart Association. Classes are available on campus at Life Support Education, University Arts building, 24887 Taylor Street, Suite 102. It
Prerequisites
Prerequisites are listed as they relate to general education domains. All courses must be completed at an institutionally accredited college or university prior to entering the program. Please note: C- grades are not transferable for credit.

Domain 1: Religion (8 quarter units)
(completed during enrollment at LLU)

Domain 2: Arts and humanities (minimum 16 quarter units)
Units must be selected from at least three of the following content areas: civilization/history, art, literature, language, philosophy, religion, or general humanities electives. A minimum of 3 quarter units in an area is required to meet a "content area."

Domain 3: Scientific inquiry and quantitative reasoning (minimum 12 quarter units)
- College algebra (statistics does not qualify)
- Introductory or general chemistry with laboratory
- Human anatomy and physiology with laboratory, complete sequence (two course minimum)
- Introductory or general physics at the college level (one quarter/semester)

Domain 4: Social sciences (minimum 12 quarter units)
- Selected from two of the following content areas: anthropology, economics, geography, political sciences, psychology, and sociology.
- The human diversity requirement is fulfilled in the portfolio core courses: RTCH 491 Portfolio I and RTCH 492 Portfolio II (approved by the University GE Committee).

Domain 5: Written and oral communication (minimum 9 quarter units)
- English composition, complete sequence that meets the baccalaureate degree requirements of a four-year college or university
- Other areas of study in communication may include courses in computer information systems, critical thinking, and public speaking.

Domain 6: Health and wellness (minimum 2 quarter units)
- A didactic course in health or nutrition (e.g., personal health, personal nutrition, population health, global health, and community nutrition) minimum of 2 units
- Physical education. Must include at least two separate physical activity courses totaling a minimum of one quarter units.

Other
- Medical terminology

Electives
To meet the minimum requirement of 96 units quarter units required for matriculation, electives may be selected from the previous four domains. For more information regarding GE requirements for graduation, see LLU general education requirements (http://llucatalog.llu.edu/about-university/division-general-studies/).

Program requirements
ARRT certified students
First Year

Autumn Quarter
- RTCH 318 Imaging Modalities 3
- RTCH 464 Moral Leadership 3
- RTCH 491 Portfolio I 3
- RTNM 351 Principles of Nuclear Medicine I 4
- RTNM 351L Principles of Nuclear Medicine I Laboratory 1

Winter Quarter
- RTCH 387 Writing for Health-Care Professionals 3
- RTNM 352 Principles of Nuclear Medicine II 4
- RTNM 352L Principles of Nuclear Medicine II Laboratory 1
- RTNM 353 Nuclear Medicine Procedures I 2
- RTNM 353L Nuclear Medicine Procedures Laboratory 1
- RTNM 364 Nuclear Medicine Statistics 3
- RTNM 430 Clinical Affiliation Introduction 1

Spring Quarter
- RTNM 354 Nuclear Medicine Procedures II 2
- RTNM 354L Nuclear Medicine Procedures II Laboratory 1
- RTNM 357 Instrumentation I 4
- RTNM 357L Instrumentation I Laboratory 1
- RTNM 361 Radiopharmacy I 3
- RTNM 431 Clinical Affiliation I 2

Second Year

Summer Quarter
- RTCH 385 Radiologic Trends in Health Care 2
- RTNM 363 Nuclear Cardiology 3
- RTNM 433 Clinical Affiliation III 4
- RTSI 367 CT Patient Care and Procedures 2
- RTSI 369 CT Physics 2

Autumn Quarter
- RTCH 415 Radiation Emergency Procedures 3
- RTCH 485 Digital Management in Radiology 3

Winter Quarter
- RTCH 436 Adventist Heritage and Health 2
- RTCH 489 Effective Communication for Supervisors 3
- RTNM 355 PET/CT 2
- RTNM 366 Medical Informatics 1
- RTNM 434 Clinical Affiliation IV 4
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTNM 421</td>
<td>Comprehensive Review of Nuclear Medicine I</td>
<td>3</td>
</tr>
<tr>
<td>RTNM 435</td>
<td>Clinical Affiliation V</td>
<td>4</td>
</tr>
<tr>
<td>Summer Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTCH 467</td>
<td>Management of a Radiologic Service</td>
<td>3</td>
</tr>
<tr>
<td>RTCH 492</td>
<td>Portfolio II</td>
<td>3</td>
</tr>
<tr>
<td>RTNM 422</td>
<td>Comprehensive Review of Nuclear Medicine II</td>
<td>3</td>
</tr>
<tr>
<td>RTNM 436</td>
<td>Clinical Affiliation VI</td>
<td>4</td>
</tr>
<tr>
<td>Total Units:</td>
<td></td>
<td>116</td>
</tr>
</tbody>
</table>

1 Fulfills service learning requirement
2 Waived for prior CT certification and/or graduates of LLU’s ASMR program.

Non-ARRT certified students

First Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Quarter</td>
<td></td>
</tr>
<tr>
<td>AHCJ 326</td>
<td>Fundamentals of Health Care</td>
</tr>
<tr>
<td>RTCH 285</td>
<td>The Principles and Physics of Radiation</td>
</tr>
<tr>
<td>RTCH 284</td>
<td>Basic Imaging</td>
</tr>
<tr>
<td>RTMR 284</td>
<td>Radiation Protection and Biology</td>
</tr>
<tr>
<td>RTM 224</td>
<td>Legal Issues in Medical Radiography</td>
</tr>
<tr>
<td>Autumn Quarter</td>
<td></td>
</tr>
<tr>
<td>RELR 456</td>
<td>Personal and Professional Ethics</td>
</tr>
<tr>
<td>RTCH 318</td>
<td>Imaging Modalities</td>
</tr>
<tr>
<td>RTCH 464</td>
<td>Moral Leadership</td>
</tr>
<tr>
<td>RTCH 491</td>
<td>Portfolio I</td>
</tr>
<tr>
<td>RTNM 351</td>
<td>Principles of Nuclear Medicine I</td>
</tr>
<tr>
<td>RTNM 351L</td>
<td>Principles of Nuclear Medicine I Laboratory</td>
</tr>
</tbody>
</table>

1 Fulfills service learning requirement

Second Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Quarter</td>
<td></td>
</tr>
<tr>
<td>RTCH 387</td>
<td>Writing for Health-Care Professionals</td>
</tr>
<tr>
<td>RTNM 352</td>
<td>Principles of Nuclear Medicine II</td>
</tr>
<tr>
<td>RTNM 352L</td>
<td>Principles of Nuclear Medicine II Laboratory</td>
</tr>
<tr>
<td>RTNM 353</td>
<td>Nuclear Medicine Procedures I</td>
</tr>
<tr>
<td>RTNM 353L</td>
<td>Nuclear Medicine Procedures Laboratory</td>
</tr>
<tr>
<td>RTNM 364</td>
<td>Nuclear Medicine Statistics</td>
</tr>
<tr>
<td>RTNM 430</td>
<td>Clinical Affiliation Introduction</td>
</tr>
</tbody>
</table>

1 Fulfills service learning requirement

Normal time to complete the program

Four (4) years — Based on full-time enrollment, a student who is a radiologic technologist (ARRT) completes the LLU portion of the program in eight (8) quarters (24 months). A student who is not a radiologic technologist (Non-ARRT) starts one quarter earlier and will complete in nine (9) quarters (27 months).

Comparison

See the comparison (http://llucatalog.llu.edu/allied-health-professions/nuclear-medicine-technology-bs/comparison/) of the ARRT certified students and Non-ARRT certified students tracks of this program.

Courses

RTNM 351. Principles of Nuclear Medicine I. 4 Units.

Covers the historical developments that led to the field of nuclear medicine. Describes the structure of the atom and the factors that make an atom radioactive. Reviews the laws of physics; periodic chart of the elements; and the trilinear chart of the nuclides, radioactive decay, radionuclide production, and quality control of radiopharmaceuticals.

RTNM 351L. Principles of Nuclear Medicine I Laboratory. 1 Unit.

A laboratory course that emphasizes the material presented in RTNM 351. Structure of the atom, radioactive decay, radionuclide production.
RTNM 352. Principles of Nuclear Medicine II. 4 Units.
Includes the model of the atom, as well as electromagnetic and particle radiation. Lists the types of radioactive decay, along with the radiation interactions with matter. Defines terms that are specific to radioactive decay and performs calculations used in nuclear medicine for pre- and postcalibration of radionuclides.

RTNM 352L. Principles of Nuclear Medicine II Laboratory. 1 Unit.
A laboratory course that emphasizes the material presented in RTNM 352. Electromagnetic and particle radiations, radioactive decay interactions, and calculations.

RTNM 353. Nuclear Medicine Procedures I. 2 Units.
Addresses nuclear medicine procedures used to image, diagnose, and treat disease with radiopharmaceuticals. Identifies use of radionuclides to image the endocrine, cardiovascular, respiratory, and skeletal systems. Includes patient preparation for scans, routes of administration of radiopharmaceuticals, methods of localization for organ imaging, radiopharmacy, and quality control.

RTNM 353L. Nuclear Medicine Procedures Laboratory. 1 Unit.
A laboratory course that emphasizes the material presented in RTNM 353.

RTNM 354. Nuclear Medicine Procedures II. 2 Units.
Addresses nuclear medicine procedures used to image, diagnose, and treat disease with radiopharmaceuticals. Identifies use of radionuclides to image the endocrine, cardiovascular, respiratory, and skeletal systems. Includes patient preparation for scans, routes of administration of radiopharmaceuticals, methods of localization for organ imaging, radiopharmacy, and quality control.

RTNM 354L. Nuclear Medicine Procedures II Laboratory. 1 Unit.
A laboratory course that emphasizes the material presented in RTNM 354.

RTNM 355. PET/CT. 2 Units.
Covers the radionuclides, radiopharmaceuticals, and contrast agents used for PET/CT imaging. Topics include: localization, indications, method of administration, standard dose range, quality control, contraindications, patient history, patient preparation, equipment, technical considerations.

RTNM 356. Positron Emission Tomography. 2 Units.
Student learns the fundamental physics, instrumentation, and radionuclide requirements of positron emission tomography (PET).

RTNM 357. Instrumentation I. 4 Units.
Covers the auger/gamma scintillation camera, collimators and crystals used in nuclear medicine. Topics include: photomultiplier tubes, pulse height analyzer, resolution, count rate, field uniformity, Geiger-Mueller counter, ionization chambers, sodium iodide well counter, dose calibrator, image acquisition, matrix size, and filters.

RTNM 357L. Instrumentation I Laboratory. 1 Unit.
A laboratory course that emphasizes material presented in RTNM 357. Gamma camera components, dose calibrator, ionization chambers, and sodium iodide well counter.

RTNM 358. Instrumentation II. 4 Units.
Covers quality control of gamma cameras and dose calibrators. Topics include: data acquisition of single-photon emission computed tomography, image filtering, field uniformity assessment and correlation, X and Y gain calibration, and positron emission tomography.

RTNM 358L. Instrumentation II Laboratory. 1 Unit.
A laboratory course that emphasizes material presented in RTNM 358. Gamma camera quality control protocols, SPECT and CT images, and data acquisition.

RTNM 361. Radiopharmacy I. 3 Units.
Covers nuclear stability and decay, radionuclide production, radioactive decay, radionuclide generator systems, radionuclides, quality control, and legal requirements.

RTNM 362. Radiopharmacy II. 3 Units.
Covers the standard dose ranges, radioactive isotopes, decay tables, distribution, preparing kits, adverse reactions, and new radiopharmaceuticals.

RTNM 363. Nuclear Cardiology. 3 Units.
Covers the principles and clinical application of cardiac imaging. Topics include: patient preparation, radiopharmaceutical, localization of radiopharmaceutical, standard dose range, pharmaceutical stress protocol, exercise stress protocol, clinical applications of myocardial perfusion imaging, and image interpretation.

RTNM 364. Nuclear Medicine Statistics. 3 Units.
Covers the percent error or percent difference, counting rate determination, effects of background on counts, counting rates, standard deviation, and propagation of error.

RTNM 366. Medical Informatics. 1 Unit.
Covers information technology systems used in the health care setting. Reviews the importance of accurate documentation. Discusses the relevance of checking patient history and laboratory results using electronic medical/health record systems.

RTNM 421. Comprehensive Review of Nuclear Medicine I. 3 Units.
Reviews physics, instrumentation, procedures, imaging, and radiopharmaceutical theories in preparation for national registries.

RTNM 422. Comprehensive Review of Nuclear Medicine II. 3 Units.
Surveys selected topics in nuclear medicine. Procedure summaries, projects, literature reviews.

RTNM 430. Clinical Affiliation Introduction. 1 Unit.
First in a series of seven consecutive courses completed during the program. Provides students with clinical experience working with staff technologists and physicians, performing the functions expected of a nuclear medicine technologist and the nuclear medicine procedures involved in patient care. Clinical assignments one day per week, eight hours per day.

RTNM 431. Clinical Affiliation I. 2 Units.
Second in a series of seven consecutive courses completed during the program. Provides students with clinical experience working with staff technologists and physicians, performing the functions expected of a nuclear medicine technologist and the nuclear medicine procedures involved in patient care. Clinical assignments two days per week, eight hours per day. Prerequisite: RTNM 430.

RTNM 432. Clinical Affiliation II. 3 Units.
Third in a series of seven consecutive courses completed during the program. Provides students with clinical experience working with staff technologists and physicians, performing the functions expected of a nuclear medicine technologist and the nuclear medicine procedures involved in patient care. Clinical assignments three days per week, eight hours per day. Prerequisite: RTNM 430, RTNM 431.
RTNM 433. Clinical Affiliation III. 4 Units.
Fourth in a series of seven consecutive courses completed during the program. Provides students with clinical experience working with staff technologists and physicians, performing the functions expected of a nuclear medicine technologist, as well as the nuclear medicine procedures involved in patient care. Clinical assignments four days per week, eight hours per day. Prerequisite: RTNM 430, RTNM 431, RTNM 432.

RTNM 434. Clinical Affiliation IV. 4 Units.
Fifth in a series of seven consecutive courses completed during the program. Provides students with clinical experience working with staff technologists and physicians, performing the functions expected of a nuclear medicine technologist, as well as the nuclear medicine procedures involved in patient care. Clinical assignments four days per week, eight hours per day. Prerequisite: RTNM 430, RTNM 431, RTNM 432, RTNM 433.

RTNM 435. Clinical Affiliation V. 4 Units.
Sixth of seven courses providing clinical experience working with staff technologists and physicians, performing the functions expected of a nuclear medicine technologist and nuclear medicine procedures involved in patient care. Clinical assignments four days per week, eight hours per day. Prerequisite: RTNM 430, RTNM 431, RTNM 432, RTNM 433, RTNM 434.

RTNM 436. Clinical Affiliation VI. 4 Units.
Seventh of seven courses providing clinical experience working with staff technologists and physicians, performing the functions expected of a nuclear medicine technologist, and nuclear medicine procedures involved in patient care. Clinical assignments four days per week, eight hours per day. Prerequisite: RTNM 430, RTNM 431, RTNM 432, RTNM 433, RTNM 434, RTNM 435.