DEPARTMENT OF PATHOLOGY AND HUMAN ANATOMY

The School of Medicine’s Division of Anatomy offers curricula leading to the Master of Science or the Doctor of Philosophy degree. The core curriculum offers a broad biomedical background. Course work provides opportunities for qualified students not only to study all aspects of human morphology from both didactic and investigative points of view, but also to develop a special area of research interest. Study and research on other species and in other biomedical disciplines may be included in the student’s curriculum. While working on a significant research problem, students are introduced to research methods both through scientific literature and the laboratory. They acquire experience in scientific communication by participating in seminars, writing critical reviews, and reporting results of research experience either in thesis/dissertation form or as publishable/published papers.

The Doctor of Philosophy degree is designed to prepare the graduate for a career in independent research and teaching in university, clinical, biotechnological, or government environments. In addition to technical skills, doctoral degree students are expected to develop creativity and independence.

The Master of Science degree provides content appropriate for persons preparing to teach at the secondary level or in related professional school areas, or for persons intending to pursue careers as research technicians.

Student learning outcomes
1. Students will demonstrate a broad knowledge of the biomedical sciences.
2. Students will demonstrate subject mastery in molecular, cellular, and integrative aspects of anatomy.
3. Students will interpret the current literature in anatomy.
4. Students will make original contributions to the body of biomedical knowledge.
5. Students will demonstrate an understanding of the principles of scientific and professional ethics.
6. Students will understand the process of applying for external funding.*

* This objective is not applicable to M.S. degree students.

First-year curriculum (Ph.D. degree)
The first-year curriculum includes a course sequence taught by interdisciplinary faculty that integrates all the disciplines of the biomedical basic science areas—moving from molecules through cellular mechanisms to integrated systems. In addition, a supplemental course covers research-related topics—such as scientific communication and integrity, information handling and statistics, and successful grant writing. Students learn of new developments in the biomedical sciences through weekly seminars, and they gain presentation skills of their own in a weekly student presentation seminar series. During the subsequent years, formal courses continue to broaden and integrate into a meaningful whole an understanding of the clinical consequences of cellular events.

Religion requirement
Students in the Master of Science (M.S.) degree curriculum are required to complete one 3-unit, graduate-level religion class (RELT 617 Seminar in Religion and the Sciences). Students in the Ph.D. degree curriculum are required to complete three graduate-level religion courses of 3 or more units each. These must include RELT 617 Seminar in Religion and the Sciences; as well as RELE 525 Ethics for Scientists and RELR 588 Personal and Family Wholeness. A course in biblical studies (RELT 559 New Testament Thought, RELT 560 Jesus the Revealer: The Message of the Gospel of John, RELT 564 Apostle of Hope: The Life, Letters, and Legacy of Paul, or RELT 565 Vision of Healing: The Message of the Book of Revelation) may be substituted for either the ethical or relational course.

Research units
A student will, at all times, have registration in research units. An IP will be assigned until the student registers for new units. The units should be spread out over the course of time it takes to complete thesis or dissertation research satisfactorily. An IP may not be carried for longer than five quarters.

Chair
Paul C. Herrmann

Program coordinator
Kenneth R. Wright

Primary faculty
Denise L. Bellinger
Resa C. Chase
Bertha C. Escobar-Poni
Paul C. Herrmann
Michael A. Kirby
Zhongrong Luo
P. Ben Nava, Jr.
Kirby C. Oberg
Kimberly J. Payne
Kenneth R. Wright

Secondary faculty
William M. Hooker

Pathologists’ Assistant Program primary faculty
Cheryl Germain

Pathologists’ Assistant Program clinical faculty
Maria Nieves G. Rabina

Admissions
In addition to Loma Linda University (http://llucatalog.llu.edu/about-university/admission-policies-information/#admissionrequirementstext) application requirements, the applicant must also complete the following requirements:
• a bachelor's degree from an accredited U.S. college or the equivalent from an international university.
• general test of the Graduate Record Examination (GRE): A total (verbal plus quantitative) score of no less than the sum of the scores corresponding to the 50th percentile of each, with neither score less than the 35th percentile; analytical writing 4.0. GRE scores older than 5 years from the date of matriculation are not considered.
• a full year of each of the following undergraduate courses:
 • general biology
 • general chemistry
 • organic chemistry
 • general physics
 • biochemistry (a minimum of one quarter/semester)
• Strongly recommended:
 • upper division biology (such as cell and molecular biology)
 • a full year of biochemistry with labs
 • research experience
 • calculus

PLEASE NOTE: CLEP (College-Level Examination Program), pass/fail performances, and online classes are not acceptable for the science required courses. Additionally, science credits earned in professional schools (e.g., allied health professions, business, dentistry, nursing or pharmacy) do not fulfill requirements for admissions to the graduate program.

The program reserves the right to decide on the equivalence of courses presented by the applicant.

Programs

Pathologists’ Assistant — M.S. (http://llucatalog.llu.edu/medicine/pathology/path-assistant-ms)

Anatomy Courses

ANAT 301. Head and Neck Anatomy, DH. 4 Units.
Gross anatomy of the head and neck. Lecture and demonstration.

ANAT 303. General and Oral Histology and Embryology. 3 Units.
Microscopic study of fundamental cells, organs, tissues, and systems of the body. Analyzes in detail the pulp, periodontal tissues, alveolar process, oral mucosa, and calcified tissues of the tooth. Includes development of head and neck structures.

ANAT 507. Stem Cell Biology and Medicine. 4 Units.
Provides students with information on the latest developments in animal and human stem cell research and on the potential application of stem cells to medicine. Explores the derivation, manipulation, and differentiation of embryonic, germ, and adult stem cells. Lectures presented by faculty participating in stem cell research in areas of their expertise.

ANAT 510. Gross Anatomy. 8.5 Units.
Supports the organ system curriculum in the first year of medical education. Teaches students the morphological setting upon which clinical knowledge and experiences are built. Approaches anatomy from a gross structural perspective. Students use knowledge to recognize clinical variations and abnormalities in preparation for their medical careers.

ANAT 511. Human Anatomy for Dentists I. 5 Units.
An in-depth study of the human anatomical sciences, including: gross anatomy, general and oral histology, embryology, and neuroanatomy as they relate to the dental profession. Designed for students in the first year of dentistry, and for students in the dental track of the biomedical sciences postbaccalaureate certificate program.

ANAT 512. Human Anatomy for Dentists II. 5 Units.
An in-depth study of the human anatomical sciences, including gross anatomy, general and oral histology, embryology, and neuroanatomy as they relate to the dental profession. Designed for students in the first year of dentistry, and for students in the dental track of the biomedical sciences postbaccalaureate certificate program.

ANAT 513. Human Anatomy for Dentists III. 5 Units.
An in-depth study of the human anatomical sciences, including gross anatomy, general and oral histology, embryology, and neuroanatomy as they relate to the dental profession. Designed for students in the first year of dentistry, and for students in the dental track of the biomedical sciences postbaccalaureate certificate program.

ANAT 515. Human Embryology. 2 Units.
Reviews the morphologic processes and molecular basis of human development. Includes the production of human gametes, fertilization, gastrulation, placentation, and development of the major organ systems. Emphasizes clinically relevant features of pregnancy and developmental processes that are susceptible to malformation.

ANAT 516. Neuroscience GS. 6 Units.
Integrated approach to the fundamentals of neuroanatomy and neurophysiology, with applications to clinical neurology.

ANAT 525. Special Topics: Advanced Dissection. 1-4 Units.
Detailed dissection of a specified body region. Demonstration and lecture. May be repeated for additional credit. Offered on demand. Prerequisite: ANAT 541; or equivalent with approval of program director or department chair.

ANAT 527. Advanced Clinical Anatomy for Nurse Anesthetists. 5 Units.
Emphasizes detailed description and applied anatomy of the body systems (cardiovascular, respiratory, renal, hepatic nervous, and endocrine) relevant to the nurse anesthetist.

ANAT 529. Gross Anatomy and Embryology. 10.5 Units.
Provides the morphological foundation upon which clinical knowledge and experiences are built. Supports the organ-system curriculum in the freshman year. Approaches anatomy from gross structural and embryological perspectives. Provides students with the knowledge necessary to recognize clinical variations and abnormalities during their medical careers. Cross-listing: ANAT 510.

ANAT 541. Gross Anatomy GS. 7 Units.
Anatomy of the head, neck, locomotor system, thorax, abdomen, pelvis, and perineum. Correlated with radiology, applied features, and embryological development. Summer and Autumn quarters.

ANAT 542. Cell Structure and Function GS. 7 Units.
The microscopic structure of cells, tissues, and organs of the human body. Autumn Quarter.
PATH 522. Anatomical Techniques II. 3 Units.
Designed specifically for pathologists' assistant students.
Comprehensive coverage of surgical and autopsy pathology techniques.
Incorporates histology and medical terminology, including clinical and pathologic correlations.

PATH 524. Clinical Microbiology for Pathologists' Assistants. 3 Units.
Studies of pathologically pertinent microbes and pathogenic mechanisms; overview of methods of identification and antibiotic sensitivities.

PATH 551. Disease Mechanisms I. 3 Units.
Comprehensive study of mechanisms of disease and clinical correlations, based on Robbins' Pathologic Basis of Disease.

PATH 552. Disease Mechanisms II. 3 Units.
Builds on the basic courses in the pathologists' assistant curriculum.
Requires students to use critical-thinking skills in the participatory discussion sessions. Prepares students for clinical practicum experiences.

PATH 564. Biomedical Photography. 1 Unit.
Investigates the use of digital cameras, scanners, Adobe®, photomicrography, and macrophotography. Examines fundamental processes applied in digital photography to a wide range of specimen types.

Pathology Courses

PATH 501. Anatomy and Pathology I. 4 Units.
A systems-based approach to the study of human anatomy utilizing cadaver dissection, correlating gross and microscopic anatomy and associated pathologies.

PATH 502. Anatomy and Pathology II. 4 Units.
A systems-based approach to the study of human anatomy utilizing cadaver dissection, correlating gross and microscopic anatomy and associated pathologies.

PATH 517. Human Systemic Pathology. 9.5 Units.
Cooperates with the efforts of the sophomore year curriculum towards the orderly, integrated progression of students in their application of the principles of the basic sciences in the development of competencies in actual patient care. Introduces students to the important diseases and anomalies of each human organ system and their impacts on patients. Uses a combination of didactic sessions, self-study assignments, online image modules, practical laboratory experience, self-assessment questions, computer-based group quizzes, and interactive team-based sessions to emphasize the etiologies, pathogeneses, macroscopic and microscopic morphologic features, pathophysiologies, biologic behaviors, and relevant laboratory findings of such disorders. Challenges students with multiple clinical scenarios for each organ system with the intent of developing analytical thinking, productive skills of cooperation between the team members, and appropriate use of laboratory testing.

PATH 521. Anatomical Techniques I. 3 Units.
Designed specifically for pathologists' assistant students.
Comprehensive coverage of surgical and autopsy pathology techniques.
Incorporates histology and medical terminology, including clinical and pathologic correlations.
PATH 762. Pathologists' Assistant Practicum II. 9 Units.
Rotations in surgical and autopsy pathology to include forensics and pediatrics in a variety of clinical settings, such as academic health centers, community hospitals, and private laboratories.

PATH 763. Pathologists' Assistant Practicum III. 9 Units.
Rotations in surgical and autopsy pathology to include forensics and pediatrics in a variety of clinical settings, such as academic health centers, community hospitals, and private laboratories.

PATH 764. Pathologists' Assistant Practicum IV. 9 Units.
Rotations in surgical and autopsy pathology to include forensics and pediatrics in a variety of clinical settings, such as academic health centers, community hospitals, and private laboratories.

PATH 891. Pathology Elective. 1.5-27 Units.
Offers fourth-year medical students the opportunity to explore various areas of pathology, including but not limited to hematopathology, molecular embryopathy, and research.