GEOLOGY — B.S., M.S.

Programs

- Geology — B.S. (http://llucatalog.llu.edu/medicine/geology/bs), M.S. (http://llucatalog.llu.edu/medicine/geology/ms)

Courses

GEOL 204. Physical Geology. 4 Units.
Introductory geology course that provides the student with a broad picture of geological processes operating on and within the earth. Introduction to minerals, sedimentary and igneous rocks, and fossils. Weathering, earthquakes, volcanism, erosion and sedimentation, and plate tectonics. Three class hours, one three-hour laboratory or field trip per week.

GEOL 316. Mineralogy. 4 Units.
Studies minerals, including: crystallography and crystal chemistry, phase diagrams, and systematic classification. Mineral identification based on hand sample, optical, and other analytical techniques. Three class hours and one three-hour laboratory or field trip per week.

GEOL 317. Igneous and Metamorphic Petrology. 4 Units.
Systematically studies igneous and metamorphic rocks, including: classification by petrography and geochemical methods; application of one-, two-, and three-component phase diagrams; and models of petrogenesis. Three class hours and one three-hour laboratory or field trip per week.

GEOL 416. Sedimentology and Stratigraphy. 6 Units.
Interprets the sedimentary rock record through a study of rock types, depositional processes, and models. Studies stratigraphic nomenclature and approaches to correlation on local, regional, and/or global scales. Laboratory analysis of primary and diagenetic mineralogy, textures, and sedimentary structures in clastic and carbonate rocks. Field descriptions of sedimentary rocks, structures, and sequences; and field experience in interpreting depositional processes and stratigraphic relationships.

GEOL 424. Structural Geology. 4 Units.
Theory of stress and strain, and examination of rock deformation in a framework of plate tectonics. Includes problems and applications. Three class hours—with required full-day and half-day field trips—and one three-hour laboratory or field trip per week.

GEOL 426. Invertebrate Paleontology. 4 Units.
Structure, classification, ecology, and distribution of selected fossil invertebrate groups. Principles and methods involved in the study and analysis of invertebrate fossils. Three class hours and one three-hour laboratory per week.

GEOL 427. Vertebrate Paleontology. 4 Units.
Systematics, biology, stratigraphic distribution, and biogeography of fossil vertebrates.

GEOL 431. Geochemistry. 4 Units.
Chemical concepts and their geochemical applications in areas of interest in elementary geology. Prerequisite: College chemistry; or consent of instructor.

GEOL 434. Introduction to GIS for the Natural Sciences (2). 2 Units.
Principles and practice of GIS data acquisition, data editing, map making, and geodatabase management. Recommended for students beginning a research project.

GEOL 435. GIS Spatial Analysis for the Natural Sciences (3). 3 Units.
Advanced analysis of GIS data; statistical analysis, geographic analysis of spatial data, and methods of displaying, editing, and modeling spatial data using ArcGIS and related GIS tools. Recommended for students who have research data in hand to analyze.

GEOL 443. Historical Geology. 4 Units.
Introduces earth history with in-depth examination of the stratigraphic record of rocks and fossils. Three class hours and one three-hour laboratory per week.

GEOL 444. Paleobotany. 4 Units.
Fossil plants; their morphology, paleoecology, taphonomy, classification, and stratigraphic distribution. Analyzes floral trends in the fossil record. Three class hours and one three-hour laboratory or field trip per week.

GEOL 455. Modern Carbonate Depositional Systems. 3 Units.
Examines modern and Pleistocene carbonate systems in the field, using these environments as models for understanding sediment production, facies development, and early diagenesis for many ancient carbonates. Presentations and readings on specific environments combined with field descriptions, mapping, analysis, and reports. Requires rigorous hiking and snorkeling in shallow water.

GEOL 456. Field Methods of Geologic Mapping. 4 Units.
Advanced geologic mapping of complex areas, with interpretation of their history; includes mapping of igneous, metamorphic, and sedimentary rocks. Experience in preparation of geologic reports of each mapped locality.

GEOL 465. Hydrogeology. 4 Units.
Theory and geology of groundwater occurrence and flow, the relation of ground water to surface water, and the potential distribution of ground water by graphical and analytical methods. Three class hours and one three-hour laboratory per week.

GEOL 475. Philosophy of Science and Origins. 4 Units.
Concepts in the history and philosophy of science, and application of these principles in analyzing current scientific trends.

GEOL 484. Readings in Geology. 1-4 Units.
Reviews literature in a specific area of geology. Students make presentations from the literature and submit current papers dealing with the assigned topic.

GEOL 485. Seminar in Geology. 0.5 Units.
Selected topics dealing with recent developments.

GEOL 486. Research and Experimental Design. 2 Units.
Concepts, methods, and tools of research—including experimental design and data analysis.

GEOL 487. Field Geology Studies. 1-6 Units.
Special field study trips lasting one or more weeks. Student involvement required, including field presentations and fieldwork assignments, such as the measurement and analysis of sedimentary sections, facies profiling, paleontologic excavation, mapping, or other geological or paleontology field activity. One unit of credit per week. May be repeated for additional credit.

GEOL 488. Topics in Geology. 1-4 Units.
Reviews current knowledge in specified areas of the earth sciences. Registration should indicate the specific topic to be studied. May be repeated for additional credit. Offered on demand.
GEOL 489. Readings in Paleontology. 1-4 Units.

GEOL 495. Special Projects in Geology. 1-4 Units.
Special project in the field, laboratory, museum, or library under the direction of a faculty member. Registration indicates the specific field of the project.

GEOL 497. Undergraduate Research. 1-4 Units.
Original investigation and/or literature study pursued under the direction of a faculty member. May be repeated for additional credit.

GEOL 512. Invertebrate Paleontology. 4 Units.
Structure, classification, ecology, and distribution of selected fossil invertebrate groups. Considers principles and methods involved in the study and analysis of invertebrate fossils. Per week: Class three hours, plus one three-hour laboratory. Additional work required beyond GEOL 426.

GEOL 513. Vertebrate Paleontology. 4 Units.
Fossil vertebrates, with emphasis on the origins of major groups. Systematics, biology, and biogeography of ancient vertebrates. Per week: class three hours, plus one three-hour laboratory. Additional work required beyond GEOL 427.

GEOL 514. Paleobotany. 4 Units.
Fossil plants, their morphology, paleoecology, taphonomy, classification, and stratigraphic distribution. Analyzes floral trends in the fossil record. Per week: three class hours and one three-hour laboratory or field trip. Additional work required beyond GEOL 444.

GEOL 516. Sedimentology and Stratigraphy. 6 Units.
Interprets the sedimentary rock record through a study of rock types, depositional processes, and models. Studies stratigraphic nomenclature and approaches to correlation on local, regional, and/or global scales. Laboratory analysis of primary and diageneric mineralogy, textures, and sedimentary structures in clastic and carbonate rocks. Field descriptions of sedimentary rocks, structures, and sequences; and field experience in interpreting depositional processes and stratigraphic relationships. Additional work required beyond GEOL 446.

GEOL 517. Modern Carbonate Depositional Systems. 3 Units.
Examines modern and Pleistocene carbonate systems in the field, using these environments as models for understanding sediment production, facies development, and early diagenesis for many ancient carbonates. Presentations and readings on specific environments combines with field descriptions, mapping, analysis, and reports. Requires rigorous hiking and snorkeling in shallow water. Additional work required beyond GEOL 445.

GEOL 518. Earth Structure, Process, and History. 4 Units.
Study of geological processes and the resulting geological record. Introduces minerals and rocks, sedimentary and igneous processes, fossils, plate tectonics, geological history, and models of earth history. Student prepares a teaching module on the topic. Open only to students in the M.S. degree program in natural sciences. Per week: class three hours, one three-hour laboratory or field trip.

GEOL 526. Introduction to GIS for the Natural Sciences. 2 Units.
Principles and practice of GIS data acquisition, data editing, map making, and geodatabase management. Recommended for students beginning a research project.

GEOL 535. GIS Spatial Analysis for the Natural Sciences. 3 Units.
Advanced analysis of GIS data; statistical analysis, geographic analysis of spatial data, and methods of displaying, editing, and modeling spatial data using ArcGIS and related GIS tools. Recommended for students who have research data in hand to analyze.

GEOL 545. Taphonomy. 4 Units.
Processes that affect an organism from death until its final burial and fossilization, and utilization of this information in reconstructing ancient assemblages of organisms. Three class hours per week. One laboratory per week to study, describe, and interpret fossil assemblages of vertebrates, invertebrates, and microfossils.

GEOL 554. Limnogeology. 4 Units.
Ancient lake deposits, including their sedimentologic, paleontologic, mineralogic, geochemical, and stratigraphic characteristics. Investigates analogs the depositional processes occurring in modern lakes. Laboratory and several extended field trips.

GEOL 555. Carbonate Geology. 4 Units.
Advanced look at the geology of carbonate rocks, including petrology; depositional environments; and overview of current topics of research. Laboratory experience in the analysis of carbonate rocks and rock sequences. Field trip to an ancient carbonate sequence.

GEOL 556. Paleoenvironments. 3 Units.
Applies paleontologic, sedimentologic, and geochemical data and methods to interpretation of past sedimentary environments, with emphasis on organism-sediment relationships. Investigates analogs processes, sediments, and organisms in modern depositional environments.

GEOL 557. Paleoenvironments Field Trip. 1 Unit.
Field experience intended as a follow up to GEOL 556 Paleoenvironments. Consists a ten-day field trip to selected locations representing a broad spectrum of sedimentary environments.

GEOL 558. Philosophy of Science. 4 Units.
Selected topics in the history and philosophy of science, and application of these principles in analyzing contemporary scientific trends.

GEOL 559. Philosophy of Science and Origins. 1 Unit.
Studies selected topics in the history and philosophy of science, and applies these principles in analyzing current scientific trends. Provides an advanced update in the topic for students who have had a similar course at the undergraduate level.

GEOL 565. Analysis of Sedimentary Rocks. 4 Units.
Provides exposure to a range of analytical tools used to answer questions in sedimentary geology. Emphasizes three instruments—optical microscope, x-ray diffractometer, and scanning electron microscope—and introduces other analytical approaches. Participants will use case studies to develop skills in project design, collection of quantitative data, and evaluating existing datasets.

GEOL 566. Sedimentary Processes. 4 Units.
Advanced methods and principles of sedimentology, with emphasis on analysis and interpretation of sedimentary structures and the processes that produced them. Discusses in detail sedimentary facies, depositional environments, chemogenic and biogenic sedimentation, and postdepositional diagenetic processes. Research or project paper required. Three class hours and one three-hour laboratory or field trip per week, and several extended field trips.

GEOL 567. Stratigraphy and Basin Analysis. 4 Units.
Advanced methods of stratigraphy and basin analysis, including facies analysis, depositional systems, sequence stratigraphy, paleogeography, and basin modeling. Research or project paper required. Three class hours and one laboratory or field trip per week, and two extended field trips.
GEOL 575. Hydrogeology. 4 Units.
Theory and geology of groundwater occurrence and flow, the relation of groundwater to surface water, and the potential distribution of groundwater by graphical and analytical methods. Three class hours and one three-hour laboratory per week.

GEOL 588. Topics in Geology. 1-4 Units.
Reviews current knowledge in specified areas of the earth sciences. When registering, the student must indicate specific topic to be studied. May be repeated for additional credit. Offered on demand.

GEOL 594. Readings in Geology. 1-4 Units.
Reviews the literature in a specific area of geology. Students make presentations from the literature and submit current papers dealing with the assigned topic.

GEOL 595. Readings in Limnogeology. 1 Unit.
Readings and analysis of current and classic scientific literature dealing with modern and ancient lake environments—including geochemistry, sedimentology, biology and paleontology, and related subjects. Activities include student presentations of papers, discussion, and research proposals and reports. One extended, multiday field trip required.

GEOL 607. Seminar in Geology. 0.5 Units.
Selected topics dealing with recent developments.

GEOL 616. Research and Experimental Design. 2 Units.
Concepts, methods, and tools of research—including experimental design and data analysis.

GEOL 617. Proposal Writing and Grantsmanship. 2 Units.
Skills and practice of effective proposal writing, and strategies for locating and obtaining research grants.

GEOL 618. Writing for Publication. 1 Unit.
Explores the mechanics and processes of preparing, submitting, revising, and resubmitting a manuscript for publication in a peer-reviewed journal. Designed for students who are well along in the process of writing their first manuscript for publication. Prepares students to handle the manuscript revision process when the manuscript is returned from reviewers, as well as the final stage of resubmission to the journal.

GEOL 658. Advanced Philosophy of Science readings (2). 2 Units.
Reading and discussion of selected references in the philosophy of science, and the application of these concepts in the practice of scientific research and interpretation, including their influence on scientific study of origins. Best taken near the end of a student's graduate program. Two-hour class session per week.

GEOL 695. Special Projects in Geology. 1-4 Units.
Special project in the field, laboratory, museum, or library under the direction of a faculty member. Registration indicates the specific field of the project.

GEOL 697. Research. 1-8 Units.

GEOL 698. Thesis Research. 1-8 Units.
Credit for research and for writing the master's thesis. Grade received does not indicate whether thesis is completed and approved.

GEOL 699. Dissertation Research. 1-8 Units.
Credit for research and for writing the doctoral dissertation. Grade received does not indicate whether dissertation is completed and approved.